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This paper will introduce an algorithm to solve the Sudoku puzzle based on a stochastic 

optimization approach. This approach is being compared with the brutal-force searc- 
hing and the Metropolis–Hastings algorithm. Although this stochastic optimization 
approach is defeated by the Brute-force searching in solving the Sudoku. But this ap- 
proach shows its capability of solving a complex system that cannot be done with the 
Metropolis–Hastings algorithm 

 

 

I. INTRODUCTION 
 

This paper will present an interesting method to solve 
the well-known mathematic puzzle, Sudoku. Sudoku is a 
number-placement puzzle invented by American Howard 
Garns in 1979 [1]. The objective is to fill a 9×9 grid with 
digits such that every column, row, and the nine subgrids 
contain all of the digits from 1 to 9.  

 
Sudoku can be solved by a wide range of solving 

algorithms, including brute-force searching, constraint 
programming, and stochastic optimization methods [1]. 
This paper will focus on the last technique, stochastic 
optimization method, to examine the performance of this 
method over the others, and to compare the similarity of 
Sudoku with realistic physical system. 
 

II. WORD DEFINITION 
 

Before continuing to the next section, some words need 
to be clarified here 
 

A. Grid(s) 
 

Grid(s) refers to the biggest question frame of Sudoku, 
which contains 9 subgrids and 81 numbers 

 
B. Subgrid(s) 

 
Subgrid(s) refers to that 9 blocks in the Sudoku. 
 

C. Energy 
 

Energy refers to the total repeated numbers across each 
row, column and among subgrids. For example, there is a 
row filled like: 

 
1 2 2 3 3 3 5 6 7 

 
Then the number 2 is repeat once and number 3 is 

repeated twice, then the total repeated numbers of this 
row is 1+2=3. The above calculation will be done on all 
rows, columns and grids 
 

III. METHOD 
 

The stochastic optimization method used in this paper 
is of the family of simulated annealing [2] that modified to 
play the role of a sudoku solver.  
 

A. The Solving Algorithm 
 

1. Assign the remaining numbers to each subgrid. For 
example: 

3   
 1 6 
  4 

 
The remaining numbers of the above subgrid are 2, 
5, 7, 8 and 9. If assigning the number based on 
ordered scheme, the subgrid becomes 
 

3 2 5 
7 1 6 
8 9 4 

 
If assigning the number based on randomized 
scheme, the subgrid can be 
 

3 9 7 
5 1 6 
2 8 4 

 
2. Randomly select a (non-given) number from a sub-

grid, i.e. 2,5,7,8 and 9 are the non-given numbers of 
the above subgrid. Then evaluate the corresponding 
energy as if the possible exchange in the selected 
subgrid is being performed. 

3. The exchange is based on a probability mapping 
over the energies of possible exchanges. This proba-
bility function is: 

𝑃(𝑖) =
𝑒𝑥𝑝(−𝐸 / 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

𝑠𝑢𝑚[ 𝑒𝑥𝑝(−𝐸 / 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) ]
 

where i is the selected exchange, j is all of the 
possible exchange, Ei is the energy regarding the i 
exchange, Constant is selected as 0.47466 here, its 
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property will be discussed in the coming section. 
Now take an example, let the number 5 is selected, 
then the possible exchanges are 5<-->2, 5<-->5,  
5<-->7, 5<-->8 and 5<-->9. And let the energies after 
these possible exchanges as 30, 28, 26, 25 and 24 
respectively. Then the probabilities to perform each 
exchange is 2.85E-6, 1.93E-4, 1.30E-2, 0.107 and 
0.880 respectively. 

4. Goto (2) until zero energy is achieved. 
 

B. Performance Benchmark 
 

As to reduce the bias due to the random nature of the 
stochastic optimization, the result will be based on solving 
100 different questions and solving each by 10 times. 

 
This paper will benchmark the performance of the 

stochastic optimization method by comparing the time 
and memory usage with brute-force searching. It will also 
compare the performance of the aforementioned method 
and the Metropolis–Hastings algorithm [3]. 
 

IV. DEMONSTRACTION 
 
The demonstration of stochastic Sudoku solver is 

available on: http://lomanhei.ddns.net/sudoku.php . 
After entered the page, you may see the solver like Fig. 1. 
There are several functions in that page: 
1. You may input your question by filling in the grid on 

the left. 
2. If you do not have any questions, you may obtain one 

by clicking “GIVE ME A QUESTION” 
3. You may empty the grid by clicking “RESET ALL”.  
4. You may solve the input question by clicking 

“SOLVE IT” 
5. After the question is solved, the solution will be 

displayed next to the question, as shown in Fig. 1 
6. You may see the evolution of the solving process by 

clicking “PLAY”. By default, it will start from the 
first frame. And you may stop the animation by 
clicking “STOP”. 

7. You may see any specified frame when the animation 
is stopped and input the frame number in the text box 
next to the “PLAY” button. 

 
V. RESULT AND DISCUSSION 

 
A. Solving Process 

Fig. 2. Profile of the solving process 
 

We will use the same question of Fig. 1 as example, the 
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solving profile of showing the number of wrong numbers 
with green line and the number of repeated numbers with 
purple line, the energy, is shown in Fig. 2. 

 
The wrong number is that, during the solving process, if 

the current number mismatched with the solution at a 
certain position, then that number is consider as wrong. 

 
As shown in Fig. 2, the quantity being optimized, the 

energy, is gradually decreased in the first few hundred 
steps. The value of energy was dropped as low as 2 at 
around the 800th step. However, the puzzle was solved 
until the 5721st step. It shows that the correlation be-
tween the energy and the number of wrongs is not 100%. 
Although zero energy guaranteed the correct solution, a 
slightly positive energy still leading to several possible 
configurations.  

 
But considering the number of wrongs cannot be 

examined until the Sudoku is fully solved, the performance 
by optimizing the energy is still astonishing.  

 
B. Property of the Probability Function 

 
Now, discuss the property of the probability function in 

the algorithm: 

𝑃(𝑖) =
𝑒𝑥𝑝(−𝐸 / 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

𝑠𝑢𝑚[ 𝑒𝑥𝑝(−𝐸 / 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) ]
 

Recalling the formula of the Boltzmann distribution [4] 
of a certain state in a system:  

𝑃(𝑖) =
𝑒𝑥𝑝(−𝐸 / 𝑘𝑇)

𝑠𝑢𝑚[ 𝑒𝑥𝑝(−𝐸 / 𝑘𝑇) ]
 

where P(i) is the probability of state i, Ei is the energy state 
i, k is the Boltzmann constant, T is the temperature, and j 
is the index of all accessible state. By inspection, these two 
equations are almost the same just differing by the 
notation of constant kT.  
   
  The sense of the probability function being the Boltz-
mann distribution is that: assuming each step of iteration 
is to relax a selected position with another arbitrary 
position in the subgrid. Then the possible exchanges are 
the possible accessible state given that other subgrids are 
rigid. 
 
  Thereafter, it raised an interesting meaning to the 
Constant, the temperature. And the solving process is 
analogy to annealing the Sudoku toward the given 
temperature. If that temperature is high, the Sudoku will 
slowly or not converge to the solution. If the temperature 
is too low, the Sudoku may suck into a local minimum and 
not converge to the solution. Nonetheless, every Sudoku 
has its own “melting point”, so the choice of the Constant 
must be very careful. The selection of the number 0.47466 
is based on a trial and error approach on solving a set of 
Sudoku questions with various difficulties. 

 
C. Compare with the Metropolis Rule 

 
  Now to compare the different between this method and 
the Metropolis Rule [2]. The Metropolis Rule is to perform 
swapping between two numbers, if the energy is lowered, 
then the swap is 100% taken, otherwise the chance to 
swap is 𝑒𝑥𝑝(−∆𝐸 / 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡)  where ΔE is the change in 
energy.  
 

Recall the example in the method section, let the 
number 5 is selected, then the possible exchanges are 5<-
->2, 5<-->5, 5<-->7, 5<-->8 and 5<-->9. And let the 
energies after these possible exchanges as 30, 28, 26, 25 
and 24 respectively. If now the Metropolis Rule is being 
implemented, the probability of each exchange becomes 
0.25𝑒𝑥𝑝(−2/𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) , 0.25[1 − 𝑒𝑥𝑝(−2/𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡)] , 0.25, 
0.25 and 0.25 respectively. The probability is even out 
between the exchange of 5 to 7, 8 or 9.  

 
In comparison, though Metropolis Rule is less consum-

ing, it has much lower chance getting to the lowest energy 
state. The result of implementing the Metropolis Rule has 
a converging rate of 0%. 

 
 

D. Performance Benchmark 
 

TABLE I. The total memory and time usage of solving 100 
different Sudoku and solving each by 10 times. 

Method Memory Usage Time Usage 
Brute-force searching  10.7GB  15.8sec 

Stochastic optimization 282.1GB 498.8sec 
Metropolis–Hastings Not Converge 

 
VI. CONCLUSION 

 
 To conclude, the stochastic optimization approach maybe 
not the best method to solve a Sudoku, as it takes 28 times 
more memory and is 30 times slower than the Brute-force 
searching. But this approach shows its capability of 
solving a complex system that cannot be done with the 
Metropolis–Hastings algorithm, 
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