
PHYS4061 Project B – A Stochastic Way to Solve the Sudoku Puzzle
LO Man Hei

Department of Physics, The Chinese University of Hong Kong, HKSAR, China
(Dated: December 19, 2019)

This paper will introduce an algorithm to solve the Sudoku puzzle based on a stochastic

optimization approach. This approach is being compared with the brutal-force searc-
hing and the Metropolis–Hastings algorithm. Although this stochastic optimization
approach is defeated by the Brute-force searching in solving the Sudoku. But this ap-
proach shows its capability of solving a complex system that cannot be done with the
Metropolis–Hastings algorithm

I. INTRODUCTION

This paper will present an interesting method to solve
the well-known mathematic puzzle, Sudoku. Sudoku is a
number-placement puzzle invented by American Howard
Garns in 1979 [1]. The objective is to fill a 9×9 grid with
digits such that every column, row, and the nine subgrids
contain all of the digits from 1 to 9.

Sudoku can be solved by a wide range of solving

algorithms, including brute-force searching, constraint
programming, and stochastic optimization methods [1].
This paper will focus on the last technique, stochastic
optimization method, to examine the performance of this
method over the others, and to compare the similarity of
Sudoku with realistic physical system.

II. WORD DEFINITION

Before continuing to the next section, some words need
to be clarified here

A. Grid(s)

Grid(s) refers to the biggest question frame of Sudoku,
which contains 9 subgrids and 81 numbers

B. Subgrid(s)

Subgrid(s) refers to that 9 blocks in the Sudoku.

C. Energy

Energy refers to the total repeated numbers across each
row, column and among subgrids. For example, there is a
row filled like:

1 2 2 3 3 3 5 6 7

Then the number 2 is repeat once and number 3 is

repeated twice, then the total repeated numbers of this
row is 1+2=3. The above calculation will be done on all
rows, columns and grids

III. METHOD

The stochastic optimization method used in this paper
is of the family of simulated annealing [2] that modified to
play the role of a sudoku solver.

A. The Solving Algorithm

1. Assign the remaining numbers to each subgrid. For
example:

3
 1 6
 4

The remaining numbers of the above subgrid are 2,
5, 7, 8 and 9. If assigning the number based on
ordered scheme, the subgrid becomes

3 2 5
7 1 6
8 9 4

If assigning the number based on randomized
scheme, the subgrid can be

3 9 7
5 1 6
2 8 4

2. Randomly select a (non-given) number from a sub-

grid, i.e. 2,5,7,8 and 9 are the non-given numbers of
the above subgrid. Then evaluate the corresponding
energy as if the possible exchange in the selected
subgrid is being performed.

3. The exchange is based on a probability mapping
over the energies of possible exchanges. This proba-
bility function is:

𝑃(𝑖) =
𝑒𝑥𝑝(−𝐸 / 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

𝑠𝑢𝑚[𝑒𝑥𝑝(−𝐸 / 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡)]

where i is the selected exchange, j is all of the
possible exchange, Ei is the energy regarding the i
exchange, Constant is selected as 0.47466 here, its

2

property will be discussed in the coming section.
Now take an example, let the number 5 is selected,
then the possible exchanges are 5<-->2, 5<-->5,
5<-->7, 5<-->8 and 5<-->9. And let the energies after
these possible exchanges as 30, 28, 26, 25 and 24
respectively. Then the probabilities to perform each
exchange is 2.85E-6, 1.93E-4, 1.30E-2, 0.107 and
0.880 respectively.

4. Goto (2) until zero energy is achieved.

B. Performance Benchmark

As to reduce the bias due to the random nature of the
stochastic optimization, the result will be based on solving
100 different questions and solving each by 10 times.

This paper will benchmark the performance of the

stochastic optimization method by comparing the time
and memory usage with brute-force searching. It will also
compare the performance of the aforementioned method
and the Metropolis–Hastings algorithm [3].

IV. DEMONSTRACTION

The demonstration of stochastic Sudoku solver is

available on: http://lomanhei.ddns.net/sudoku.php .
After entered the page, you may see the solver like Fig. 1.
There are several functions in that page:
1. You may input your question by filling in the grid on

the left.
2. If you do not have any questions, you may obtain one

by clicking “GIVE ME A QUESTION”
3. You may empty the grid by clicking “RESET ALL”.
4. You may solve the input question by clicking

“SOLVE IT”
5. After the question is solved, the solution will be

displayed next to the question, as shown in Fig. 1
6. You may see the evolution of the solving process by

clicking “PLAY”. By default, it will start from the
first frame. And you may stop the animation by
clicking “STOP”.

7. You may see any specified frame when the animation
is stopped and input the frame number in the text box
next to the “PLAY” button.

V. RESULT AND DISCUSSION

A. Solving Process

Fig. 2. Profile of the solving process

We will use the same question of Fig. 1 as example, the

3

solving profile of showing the number of wrong numbers
with green line and the number of repeated numbers with
purple line, the energy, is shown in Fig. 2.

The wrong number is that, during the solving process, if

the current number mismatched with the solution at a
certain position, then that number is consider as wrong.

As shown in Fig. 2, the quantity being optimized, the

energy, is gradually decreased in the first few hundred
steps. The value of energy was dropped as low as 2 at
around the 800th step. However, the puzzle was solved
until the 5721st step. It shows that the correlation be-
tween the energy and the number of wrongs is not 100%.
Although zero energy guaranteed the correct solution, a
slightly positive energy still leading to several possible
configurations.

But considering the number of wrongs cannot be

examined until the Sudoku is fully solved, the performance
by optimizing the energy is still astonishing.

B. Property of the Probability Function

Now, discuss the property of the probability function in

the algorithm:

𝑃(𝑖) =
𝑒𝑥𝑝(−𝐸 / 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

𝑠𝑢𝑚[𝑒𝑥𝑝(−𝐸 / 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡)]

Recalling the formula of the Boltzmann distribution [4]
of a certain state in a system:

𝑃(𝑖) =
𝑒𝑥𝑝(−𝐸 / 𝑘𝑇)

𝑠𝑢𝑚[𝑒𝑥𝑝(−𝐸 / 𝑘𝑇)]

where P(i) is the probability of state i, Ei is the energy state
i, k is the Boltzmann constant, T is the temperature, and j
is the index of all accessible state. By inspection, these two
equations are almost the same just differing by the
notation of constant kT.

 The sense of the probability function being the Boltz-
mann distribution is that: assuming each step of iteration
is to relax a selected position with another arbitrary
position in the subgrid. Then the possible exchanges are
the possible accessible state given that other subgrids are
rigid.

 Thereafter, it raised an interesting meaning to the
Constant, the temperature. And the solving process is
analogy to annealing the Sudoku toward the given
temperature. If that temperature is high, the Sudoku will
slowly or not converge to the solution. If the temperature
is too low, the Sudoku may suck into a local minimum and
not converge to the solution. Nonetheless, every Sudoku
has its own “melting point”, so the choice of the Constant
must be very careful. The selection of the number 0.47466
is based on a trial and error approach on solving a set of
Sudoku questions with various difficulties.

C. Compare with the Metropolis Rule

 Now to compare the different between this method and
the Metropolis Rule [2]. The Metropolis Rule is to perform
swapping between two numbers, if the energy is lowered,
then the swap is 100% taken, otherwise the chance to
swap is 𝑒𝑥𝑝(−∆𝐸 / 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) where ΔE is the change in
energy.

Recall the example in the method section, let the
number 5 is selected, then the possible exchanges are 5<-
->2, 5<-->5, 5<-->7, 5<-->8 and 5<-->9. And let the
energies after these possible exchanges as 30, 28, 26, 25
and 24 respectively. If now the Metropolis Rule is being
implemented, the probability of each exchange becomes
0.25𝑒𝑥𝑝(−2/𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) , 0.25[1 − 𝑒𝑥𝑝(−2/𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡)] , 0.25,
0.25 and 0.25 respectively. The probability is even out
between the exchange of 5 to 7, 8 or 9.

In comparison, though Metropolis Rule is less consum-

ing, it has much lower chance getting to the lowest energy
state. The result of implementing the Metropolis Rule has
a converging rate of 0%.

D. Performance Benchmark

TABLE I. The total memory and time usage of solving 100
different Sudoku and solving each by 10 times.

Method Memory Usage Time Usage
Brute-force searching 10.7GB 15.8sec

Stochastic optimization 282.1GB 498.8sec
Metropolis–Hastings Not Converge

VI. CONCLUSION

 To conclude, the stochastic optimization approach maybe
not the best method to solve a Sudoku, as it takes 28 times
more memory and is 30 times slower than the Brute-force
searching. But this approach shows its capability of
solving a complex system that cannot be done with the
Metropolis–Hastings algorithm,

VII. REFERENCE

[1] Sudoku solving algorithms. Wikipedia. (Visited at 2019).

en.wikipedia.org/wiki/Sudoku_solving_algorithms
[2] W.H. Press et al. Simulated Annealing Methods. Numerical

Recipes: The Art of Scientific Computing (3rd ed.). New York:
Cambridge University Press. (2007)

[3] B.A. Berg. Markov Chain Monte Carlo Simulations and Their
Statistical Analysis. Singapore, World Scientific. (2004).

[4] L. Landau et al. Statistical Physics. Course of Theoretical
Physics. 5 (3 ed.). Oxford: Pergamon Press. (1976)

